Convex proximal bundle methods in depth: a unified analysis for inexact oracles
نویسندگان
چکیده
The last few years have seen the advent of a new generation of bundle methods, capable to handle inexact oracles, polluted by “noise”. Proving convergence of a bundle method is never simple and coping with inexact oracles substantially increases the technicalities. Besides, several variants exist to deal with noise, each one needing an ad hoc proof to show convergence. We state a synthetic convergence theory, in which we highlight the main arguments and specify which assumption is used to establish each intermediate result. Our framework is comprehensive and generalizes in various ways a number of algorithms proposed in the literature. Based on the ingredients of our synthetic theory, we consider various bundle methods adapted to oracles for which high accuracy is possible, yet it is preferable not to make exact calculations often, because they are too time consuming.
منابع مشابه
Bundle Methods for Convex Minimization with Partially Inexact Oracles
Recently the proximal bundle method for minimizing a convex function has been extended to an inexact oracle that delivers function and subgradient values of unknown accuracy. We adapt this method to a partially inexact oracle that becomes exact only when an objective target level for a descent step is met. In Lagrangian relaxation, such oracles may save work by evaluating the dual function appr...
متن کاملLevel bundle methods for constrained convex optimization with various oracles
We propose restricted memory level bundle methods for minimizing constrained convex nonsmooth optimization problems whose objective and constraint functions are known through oracles (black-boxes) that might provide inexact information. Our approach is general and covers many instances of inexact oracles, such as upper, lower and on-demand accuracy oracles. We show that the proposed level bundl...
متن کاملA Proximal Bundle Method for Nonconvex Functions with Inexact Oracles
For a class of nonconvex nonsmooth functions, we consider the problem of computing an approximate critical point, in the case of inexact oracles. The latter means that only an inexact function value and an inexact subgradient are available, at any given point. We assume that the errors in function and subgradient evaluations are merely bounded, and in principle need not vanish in the limit. We ...
متن کاملConstrained Bundle Methods for Upper Inexact Oracles with Application to Joint Chance Constrained Energy Problems
Joint chance constrained problems give rise to many algorithmic challenges. Even in the convex case, i.e., when an appropriate transformation of the probabilistic constraint is a convex function, its cutting-plane linearization is just an approximation, produced by an oracle providing subgradient and function values that can only be evaluated inexactly. As a result, the cutting-plane model may ...
متن کاملInexact Dynamic Bundle Methods
We give a proximal bundle method for minimizing a convex function f over R+. It requires evaluating f and its subgradients with a possibly unknown accuracy ε ≥ 0, and maintains a set of free variables I to simplify its prox subproblems. The method asymptotically finds points that are ε-optimal. In Lagrangian relaxation of convex programs, it allows for ε-accurate solutions of Lagrangian subprob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 148 شماره
صفحات -
تاریخ انتشار 2014